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I. INTRODUCTION

Recently proposed space structures have grown increasingly large

and complex. These may be delivered to orbit by the space shuttle and

then deployed/assembled on orbit. To reduce weight, efficient designs of

such systems tend to lead to flexible, low-frequency, and often Joint-
dominated structures. Interaction between rigid body motion and

structural deformation will likely occur. For efficient operation of

system requiring component articulation, it is desirable to maneuver

components as rapidly as possible. Operational speed is limited by

excessive dynamic deformation if vibrations are not suppressed. In

order to suppress excessive vibration response, active controls may be

utilized. The control design is usually based on linear methods, however

the articulation is governed by nonlinear equations, moreover, design

methods use reduced structural models. To access these design

performance as well as stabilities, analytical simulations are usually

performed.

Simulation codes for multibody systems such as DADS[I], DISCOS[2],

and TREETOPS[3] use assumed mode approach to describe the structural

deformations of components. This approach requires users to pick a

reference frame for the component, discretize the component into finite

elements, select component boundary conditions upon which the modes will

be generated, solve the eigenvalue problem for deformation modes and

select a modal set for the application at hand. Modal selection is often

the most crucial part in the procedure. Since deformations of the

component are defined as linear combination of the selected modes, the

component can only deform in the space spanned by the selected modes.

Therefore, results of the modal approach will be misleading if any modes

are significantly excited were not selected. To predict which modes will

get excited can be a difficult challenge in a flexible multibody system,

since the system configurations are changing with time. Especially is

thus true for many proposed future spacecrafts which have complicated

geometry and joint hinges.

To provide an alternative approach which circumvented some of

these difficulties, the LATDYN computer code was developed for research

purposes. The LATDYN program is finlte-element-based. The user model the

component with finite elements, instead of using truncated modes which

have to be generated outside the multibody analysis codes. In order to

separate the rigid body motion and small deformations in the finite

element approach, a coordinate system is chosen to represent the large

displacement and rotation of the element. Deformations of the element

are then defined with respect to the rigid body configuration of the

element. At the element-level, mass matrices are calculated. The

component mass matrix is obtained by assembling each elemental mass

matrices as is typically done in conventional small motion/deformation

finite element methods.

To form the system mass matrix, most multibody simulation codes

impose nonlinear kinematic constraints on components that connect to the

same joint. Instead of using constraint equations, the LATDYN program

builds hhe _inge degree-of-freedom into the system equations of motion

to connect components that share a common joint in a manner patterned

after connectivity relations in conventional, small motion, finite

elements. The mass of the interconnecting joint between the bodies

represents a significant portion of the total mass and the orientation
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of the joint's hinge lines play an important role in determining
structural behavior. It is thus reasonable to construct the finite

element program with the joints as a part of element connectivity.

2. KINEMATICS OF BEAM ELEMENT

The kinematics developed here is applicable to arbitrarily large

displacement and rotational motion of a beam with small deformations.

Consider the beam element with finite element nodes 1 and 2 at initial

(undeformed) and current (deformed) configurations in an inertial X-Y-Z

frame, as shown in Fig. i. In order to specify the configuration of the

beam element, it is necessary to define a set of generalized coordinates

that uniquely define the global displacement of every point in the

deformed element. For each node of the element, an xi-Yi-Z i (i=i,2)

nodal reference frame having its x axis tangent to the neutral axis of

the beam and y, z axes coincide with the principle axes of the beam

cross section, is chosen to locate and orient the node in the inertia

frame. Vectors r i (i=i,2) from the origin of the initial xi-Yi-Z i nodal

reference frame to the origin of the current xi-Yi-Zi nodal reference

frame define the global displacement of nodes 1 and 2. Transformation

matrices T i from nodal reference frames to the global frame define

orientations of the nodal reference frame. Deformation of the beam and

displacement of any point in the beam now can be determined using r i

and T i .

Before deformations of the beam can be defined, rigid body motion

of the beam has to be separated from the large displacement of the

beam. It is chosen to specify rigid body motion of the element by use of

a convected coordinate system Xc-Yc-Z c whose origin is located at node

i. Initially, orientations of the convected coordinate system coincides

with the nodal reference frame of both nodes 1 and 2. As the element

moves with large displacement and small deformation, the orientation of

the convected coordinate frame, hence the rigid body motion of the beam,

is determined by defining the X c axis of the Xc-Yc-Zc frame always lie

along the line connecting nodes 1 and 2, and the Yc axis to lie in the

plane formed by the y axis of xl-Yl-Zl frame and the X c axis of Xc-Yc-Z c

frame. With these definitions, the convected coordinate system is

uniquely determined.

Deformations of the beam element are defined with respect to its

rigid body configuration as

D i = TcTTi (I)

where T c denotes the transformation matrix from the rigid body

configuration (or the convected coordinate frame) to the global frame.

Where Di is the difference in orientations between T c and T i at any

time step, due to flexural deformation, namely, a transformation from

T c to T i. Note that, D i can also be regarded as the transformation of

T i that rotates about a vector from the undeformed states to the

current states. Assume that the rotation angles between T i and T c are

small, then the components of this vector are the three rotation angles

measured with respect to the three axes of T c [4]. Therefore, D i can be

simply represented by
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Di #zl 1 -#xl

where #xi, @yi, and #zi, are rotation angles of T i about x, y, and z

axis of Tc, respectively. Physically, they correspond to flexural

deformations of the beam element at nodes 1 and 2.

The rotation angles may be readily extracted from Di as follows:

_xi = (0, 0, l)Di(0, I, 0) T (2)

T
#yi = (i, 0, 0)Di(0, 0, I) (3)

T
#zi = (0, I, 0)Di(l, 0, 0) (4)

Substitution of Eq. 1 into Eqs.2-4 yields

_xi = tc3Tti2 (5)

_yi = tc]Tti3 (6)

#zi = tc2Ttil (7)

where tcj and tij are jth column of T c and Ti, respectively. Since the

x axis of T c lies on the llne connecting nodes 1 and 2, the direction

cosines of the vector from nodes 1 to node 2, which is the first column

of T c, can be written as

tcl =(r 2 - r I + r 0 )/L (8)

where r 0 is a vector from node 1 to node 2 in the initial

configuration. Since the Yc axis of T c lies on the same plane formed by

tcland ti2 , the Z c axis of T c , hence the third column of T c, is the

cross product of tcl and ti2, namely,

tc3 = tclti2 (9)

The Yc axis can be easily obtained by taking the cross product of tc3

and tcl,

tc2 = tc3tcl (i0)

where a is the skew-symmetric matrix

B =
0 -az ay 1
az 0 -ax

-ay ax 0
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with ax, ay, a z being the vector components of vector a. Note that

_T = --a and that ab = -ha, which agrees with the vector product

property axb = -bxa.

Let p=[Xc, Yc, Zc] be the position vector of an arbitrary point P

in the beam element, defined with respect to T c. Define that

_= xc/L

= yc/L

_= zclL

where L is the length of the beam element. The displacement of a point

P on a beam element due to flexural deformation may be expressed as

u = N_ (ll'i

where N is a 3x6 matrix of shape functions similar to that used in the

standard finite element method, namely

0 (I-4_+3{2)L{(-I+4{-3_)L_ 0 (-2_+3{_)L_(2{-3{_)'
N = - (I-_) L_ 0 (_-2_2+_ 3 ) 1, -L_ 0 (__2+_3)

- (i-_) L_ (-_+2F_2-_3) L 0 -L_'q (_2-_3) L 0

with _, _,and _ being xc/L, yc/L, and zc/L respectively, and _, the

composite vector of rotation angles of nodes 1 and 2,

= [ #xl, #yl, _zl, #x2, #y2, _z2 ]T

The total displacement of point P as shown in Fig. 1 is, in vector

form,

rP- rl + p + ; - P0

where p is the vector [Xc, Yc, Zc] T and in algebraic form,

r P =r I + Tc@ + Tcu - Tco@o (12)

where Tcois the initial transformation matrix of T c and Po is the

initial position vector of point P in T c. Note that, axial deformation

is implicitly included in the second term of the right-hand-side of Eq.

12.

3. SUPER-BEAM ELEMENT

In some multibody formulation, the joint connection between

elements is imposed through constraint equations. Here, instead of

introducing additional constraints, extra degree-of-freedom are added to

the original element generalized coordinates to form a super beam-

element consisting of joint and beam.
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Consider a beam element with rigid joint bodies at both ends, as

shown in Fig. 2. For simplicity, assume that no other element is

attached to both joint bodies, and both joints have a one degree-of-

freedom hinge. For each joint body, an Xi-Yi-Z i (i=i,2) body reference

frame is chosen to locate and orient the joint body in the inertia

frame. Vectors R i (i=1,2) from the origin of the initial body reference

frame to the origin of the current body reference frame define the

global displacement of joint bodies 1 and 2. Transformation matrices F i

from joint body reference frames to the global frame define orientations

of the joint body. Vectors that 10care joint attachment points in joint

bodies are denoted si (i=1,2), defined with respect to joint body

reference frames. Therefore, nodal displacements r i of the beam element

can be represented by the joint body displacements R i as

r i = R i + Fisi - FioS i (13)

TO determine the relation between T i and Fi, consider coordinate

systems X i -Yi -Zi and x i -Yi -zi that are located at a joint

attachment point one fixed to the joint body and one fixed to the nodal
! | ! | ! I

frame. Initially, let Xi -Yi -Zi and xi -Yi -zi coincide with the z

axes parallel to the hinge axis. Then, the difference in orientations of

both systems at any time is the relative rotation about the axis of
| | I | ! !

hinge. The transformation matrix from x i -Yi -zi frame to X i -Yi -Zi

frame is

eosO_ -sinOi O ]

]sin O_ cosO_ 0

0 0 1

B !

where 0 i is the relative rotation angle. Denote F i and T i be the
! | | I I !

transformation matrices of X i -Yi -Zi and x i -Yi -zi frames with

respect to Xi-Yi-Zi and xi-Yi-Z i frames, respectively. Then, the

transformation matrix from Joint body frame to the nodal reference frame

can be obtained by sequential transformations as

' 'T
T i _ FiF i OiT i (14)

Substituting Eqs. 13 and 14 into Eq. 12, the displacement of an

arbitrary point in the beam can be represented in terms of displacements

and orientations of joint bodies at the ends of beam element, and

relative rotations of joint degrees-of-freedom, i.e.,

r P = G(RI, rl, 01, R2, F2, _ 02 ) (15)

4. VARIATIONAL EQUATIONS OF MOTION OF A SUPER-BEAM ELEMENT

The variational equations of motion of a beam elemen t at time t,

for a virtual displacement field that is consistent with the constraints

is written as,
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-fff   fgSrP'_Pd_+ 5rP'fPdf/+ _r h dO= _P'ZPd_

42 4_ 4o JQ (16)

where _r P is a virtual displacement of point P that is

consistent with constraints, EP is the acceleration of point P, fP is

body force density at point P , h p is the surface traction at point P,

_P is a kinematically compatible strain variation vector, _P is the

associated stress vector at point P, and _ and _ are the volume and

surface of the beam before it is deformed.

By taking the variation of Eq. 15, the virtual displacement of

point P is obtained as

8rP= gR_RI +gv_1 +g0_SOl +gR2_R2 +gv,5_2 +g02582 (17)

where _i is virtual rotation of F i. Therefore, the virtual displacement

of a point P in the beam element is represented by the virtual

displacements and rotations of the joint bodies, and virtual rotations

of relative joint degrees-of-freedom.

The acceleration vector of a typical point can be obtained by

taking two time derivatives of Eq. 15, which gives

o, o, ,-

_P= gR_Rl+gF_l+gO,Ol+gR,R2+gF,_2+go,82

(18)

where _iand _i are angular velocity and angular acceleration of the

joint body i.

Substituting Eqs. 17 and 18 into Eq. 16, the first term is

= -[_RI",_=i :, 601,8R2',S=2:, 8O_i M

R1

o.

01 '

..

02 ]

+ s (x_1,co_,el, R2,_2, e_)

where M is the generalized mass matrix,

(19)



Symmetric

and S is quadratic in velocity,

gRzTgs, gR,TgRz gRzTgF2 gRiTgs,

gF,Tgsz gF,TgR, gF,TgF, gFiTgs,

gs,Tg81 gs,TgR, gs,TgF2 gs,Tg82

gR,TgR, gR,TgF, gR2Tg82

gF, TgF, gF, Tgsz

go,Tgs,

d_

S

gRIT (gRiRl +gF_O)l +CjsIOz +gR2R2 +c_F.O_2 +CJ8.02 )

gF_ T (gR_Rz +gFz_1 +gsz e i+gR2a2 + gF2£02 +g82e2 )

get T (gRIRI +gF_z +eel e i+ gR,R2 + gF2 f02 +gsze2 )

gR2 T (gR_RI +grz _i +ge_e i+ gR,R2 + gr2602 + ge2%2 )

gr,T (C3R,Rz +c3r,(_I+cjo,O_+tiN,R2 + CjF2602 +Cj0202 )

go, T (CJR,RI + CJI',f.01+cJS,01 +CJR,R2 + CJI'2f-02+CJ0,02 )

dfl

Similarly, the second and third term in Eq.

I _rP'fPd_ + I _rPThPd_

= [_RIT, _KIT, _i, _R2T, _K2T, _2] Q

16 become

(20)

where Q is the external generalized force vector,

Q

gR*Tf P
gF_Tf P

ge,Tf P

= IJ gRTfP

gFTf P
ge2Tf P

gR,Th P

gFtTh P

d_ + I ge_The

gRzTh P

gFTh P

geTh P

d_

For a Bernoulli beam, the right hand side of Eq. 16, or the

virtual work done by the internal force, may be expressed as

In _PT_Pd_'_
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:I'( Aulaul÷ ÷GJcx2 x2)dXc

= [_RI T, _KI T, _81, _R2 T, _K2 T, _02] U
(21)

where u I is the axial deformation,

ul__/(r2_r1+ro)T(r2_r1+ro) _ _oTr °

u2 and u 3 are bending displacements in the y and z direction of the

neutral axis, which can be obtained from Eq. ii, and U is the

generalized internal force vector.

Substituting Eqs. 19-21 into Eq. 16, the variational equation of

motion of a super-beam element can be written as

f r

M 81

R2

&2

i _ 82

+ S(R_,el,01,R2,e2,02)+ U

01
= 0

for all virtual displacements _R 1 and 6R2, virtual rotations 8_ 1 and

_E2, and virtual hinge rotations 601 and _O 2 that are consistent with

the constraints.

5. APPLICATIONS

5.1.1 Analysis of A Deployable Space Structure

The deployable space structure shown in Fig. 3 is a 20 meter long,

triangular cross section, joint dominated truss structure, referred to

as the Mini-Mast. The structure is used at NASA Langley as a ground

test article for the development of research techniques in structural

dynamic characterization of large space structures and control of

flexible structures. A total of 18 bays, each 1.12 meter long, make up

the 20 meter length of the beam above the deployer mechanism. Figure 4

illustrates two deployed bays of the beam design in more detail. One

bay of the truss beam consists of three longerons, three diagonal

members and a batten triangular truss whose cross-section fits inside a

1.4 m diameter circle. The longerons and diagonal members are connected

to batten triangles at each corner (three corner bodies are built into

each corner of the batten triangle) by revolute joints. A sketch of a

corner body is shown in Fig. 5, primarily to indicate geometric

complexity.

The system is deployed/retracted with two bays at a time. During

deploying/retraction, the vertices of two batten triangles are held
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fixed in orientation while a third batten triangle, located between the

two fixed ones, rotates about the longitudinal axis. Upward/downward

forces are then applied to deploy/retract the system. Revolute joints in

corner bodies at each apex of the triangular cross-section of each bay

and a nearly over-center hinge in each diagonal member allow the beam

truss to deploy/fold into a repeatable beam/stack, as shown in Fig. 4.

At the final stage of deploying, mid-hinge of the diagonal member is

locked up to ensure that the system becomes a structure. It is reopened

as retraction starts. Since each two deploying bays are symmetric to the

middle batten triangle, it is sufficient to analyze only one bay of the

system.

The objective of the analysis is to determine loadings on flexible

members during deployment of one bay of the truss beam. Because of the

symmetric geometry of the system, corner bodies are constrained to move

on a 1.4 m diameter cylinder during deployment. The longerons and

diagonal members are deformed, due to kinematic constraints imposed at

the joints, during deployment. Therefore, orientations of revolute

joints of the longeron and diagonal member play an important role in

design of the truss beam. A set of properly designed revolutes will

decrease deformations, hence decreasing the force required to deploy the

truss beam. The system is designed such that it is not deformed in its

fully retracted position and this then serves as a good starting point

to analyze the system response during deployment.

5.1.2 LATDYN Model Description

The model can be simplified by taking the advantage of symmetric

geometry of triangular cross section of the system. By constraining the

upper triangle to only move along and rotate about the longitudinal axis

of the truss, the LATDYN model of one bay of Mini-Mast reduces to 3

flexible longerons, 3 flexible diagonal members, and 2 batten triangles

that are modelled as rigid bodies, as shown in Fig. 6. The lower batten

triangle, batten triangle A in Fig. 6, is grounded. The upper batten

triangle, batten triangle B in Fig. 6, is driven up and down. The

batten triangles are connected to the longerons and diagonal membwrs

with revolute joints at each corner, respectively. The geometry and

material properties of the longeron and diagonal members are listed in

Table i. Initial configuration of the model is chosen with the system

in its fully packaged position, as shown in Fig. 6. Locations and

orientations of each revolute joints of longeron and diagonal member are

listed in Tables 2 and 3, respectively.

5.1.3 Results

The system is deployed by driving the upper triangle in the

longitudial direction without constraining its rotation about the

longitudial axis. The driving constraint is

z-L[T t-2/_K in(2T-_)]' t<T

Z=L, t>T

where L is length of the longeron, T is total deploying time, and Z is

the height of the upper triangle. The deployment moves the upper

triangle a distance L in the z direction in T seconds. In the

simulations which follow, T is taken as 1.0 second.
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Figures 7-8 show the variations of the bending and twisting

moments of the longeron at its midpoint, with the z displacement of the

upper triangle. Figures 9-10 show the bending moments of diagonal member

A and B while figures 11-13 display the time history of the axial forces

of longeron and diagonal member, showing that all truss members in the

system are actually in compression after deployed. This tends to

increase bending stiffness of the truss beam. Figure 14 shows the LATDYN

results for the bending moments of the longeron at the end joining the

upper triangle. Also shown are the predictions of the Astro Co.[8]- the

original Mini-Mast designer and producer, and the best result authors

can achieve using the assumed mode approach. In Fig. 14, both LATDYN and

Astro results predict a minimum bending moment in the longeron when it

rotates about 50 degrees which is reasonable from the geometry of the

structure. Results from the assumed mode approach indicate that the

deformation modes used in the analysis are not complete, which is not

apparent without another analysis test results.

5.2.1 Flapping Motion of Rotor Blade

A number of problems arise which make it necessary to study the

effects of flexibility on blade motion. For example, the affect of

flexible motion on the performance, stresses occur in the deformed

blade, and interactions between the rotational speed and the natural

frequencies of the flexible blade. An aditional complicating fator is

that due to the stiffening effect of centrifugal force, natmral

frequencies of the blade increase as blade rotation speed increases.

A simplified model of an articulated blade with no flap hinge

offset or spring restraint is shown in Fig. 15. Initially, the blade is

straight and tilted 0.157 radian. With no initial hinge velocity, the

blade rotates at a constant speed. Since the centrifugal force always

acts radially outward in a plane normal to the rotation axis, it acts as

a spring force opposing the blade flap motion, hence initicating the

flap motion and deformation.

Simulation of the same flapping blade, using an assumed mode

approach, producing a diverging solution as is reported in Reference 5.

This is because the geometric stiffening effect is not properly

accounted for[6] [7].

5.2.2 LATDYN Model and Results

In the simulation of the flapping blade using LATDYN, Rotation

speed of the blade is kept constant in each simulation and gradually

increased in succeeding simulations, starting with 1 rad/sec and going

up to 9 rad/sec. Frequencies are calculated from the transient response

of the simulation using a Fast Fourier Tranform.

Figures 16 and 17 show the bending moment of the blade at the

midpoint when it rotates at 3 and 6 rad/sec. The results clearly

indicate that the natural frequency of the first flapping bending mode

increases as the rotation speed increases, due to the centrifugal

stiffening effect. Figure 18 displays natural frequencies of the first

bending modes for different rotation speeds, compared to the solutions

derived by Southwell [9]. Good agreement between the LATDYN results and

the Southwell solution is shown: Also shown (dotted lines) in Fig. 18

are different harmonics of the rotor speed. As shown, the natural
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frequency of the first mode intersects with the third harmonic around 8

rad/sec, fourth harmonic around 4 rad/sec ,fifth harmonic around 3

rad/sec, and so on for higher harmonics. A resonance may then occur when

the blade rotates around these speeds. Figure 19 shows the bending

moment of the blade when it rotates at 8 rad/sec, which show that the

magnitude of the bending blade keeps increasing with time. The frequency
of the blade is about three times the rotational speed. The magnitude of

the response in Fig. 19 may not increase indefinitely, but may represent

a beating phenomenon with the period of the beat depending on the
closeness of 8 rad/sec to the intersection point.

CONCLUSIONS

A three dimensional, finite element based simulation tool for

flexible multibody systems is presented. Hinge degrees-of-freedom is

built into equations of motion to reduce geometric constraints. The

approach avoids the difficulty in selecting deformation modes for

flexible components by using assumed mode method. The tool is applied to

simulate a practical space structure deployment problem. Results of

examples demonstrate the capability of the code and approach.
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